
Dra
ft

Placeholder
Yeah, that is the actual proof system name.

Alisa Cherniaeva
=nil; Foundation

a.cherniaeva@nil.foundation

Ilia Shirobokov
=nil; Foundation

i.shirobokov@nil.foundation

Mikhail Komarov
=nil; Foundation

nemo@nil.foundation

July 3, 2024

Abstract

This paper introduces Placeholder, a zero-knowledge succinct non-interactive argument of knowl-
edge (zk-SNARK) based on PlonK-style arithmetization. Placeholder’s internal components, such
as commitment schemes and types of arithmetization, are replaceable and configurable. Low-level
Placeholder circuits can adapt to selected parameters, such as table size, date degree, and lookup
options. These properties enable the flexible configuration of Placeholder with trade-offs between circuit
parameters, trust assumptions, and efficiency of proof generation. Due to this flexibility, Placeholder
can accommodate particular cases, consistently achieving efficient results.

1 Introduction

zk-SNARK is a type of zero-knowledge proof system that allows one to prove the authenticity of a
statement to a verifier without revealing any additional information beyond the statement’s validity. The
«succinct» and «non-interactive» aspects of zk-SNARKs refer to the fact that the proof is short and does
not require any interaction between the prover and verifier beyond the initial setup.

Conceptually, general SNARK construction contains three steps.

Translate the problem
into a set of
polynomials.

Commit the
polynomials.

Prove some relations
on the commited

polynomials.

Our system follows general SNARK construction and contains two «main modules»:

• Arithmetization defines the arithmetic representation of the proving statement. We use PlonK-
based [1] representation with custom gates. The idea was introduced in TurboPLONK paper [2]
and modified later in other proof systems (Halo2 [3], Plonky2 [4], Kimchi [5], etc).

• Commitment Scheme for polynomials obtained from the arithmetization procedure. For these
purposes, we use List Polynomial Commitment scheme from [6].

A significant drawback of first zk-SNARK systems (Groth16 [7], Pinocchio [8]) in practice is the
requirement to run a trusted setup for the public parameters. This procedure was necessary because every
individual relation being proved with ZK-SNARKs required a different structured reference string (SRS).
Recently, new schemes were constructed with an updatable and universal SRS: Marlin [9], PlonK [10].
Because of the use of List Polynomial Commitment (LPC), the Placeholder supports a transparent setup.
This type of setup makes it well suited for use in decentralized systems, a wide range of applications,
including secure multi-party computations, as it allows for efficient and secure verification of computations
without requiring trust in the setup of the system.

The use of an LPC scheme gives the Placeholder other benefits as well. The underlying FRI protocol is
pairings-free (as opposed to Kate commitment scheme [11]). In addition, the justification of the soundness
of the FRI not only does not require pairing assumptions but also works in the quantum model. However,
Kate commitment scheme has a relatively small proof size and fast verification. The drawback of this

1

mailto:a.cherniaeva@nil.foundation
mailto:i.shirobokov@nil.foundation
mailto:nemo@nil.foundation

Dra
ft

scheme is the requirement for a minimal trusted setup. Placeholder allows switching between commitment
schemes in order to achieve target efficiency and trust assumption.

Another drawback of the first SNARK systems is an arithmetization, which allows one type of
constraint: equality of the multiplication of the sum of n variables with another sum. On the other hand,
Placeholder uses PLONK-based arithmetization, which makes it possible to build custom gates. This
type of arithmetization allows to roll up complex non-linear calculation in one constraint. Also, PLONK
enables the using of lookups as an extension. Thus, the types of computations, which is can be efficiently
expressed in Placeholder, are significantly extended. For instance, support of any logic operations can be
easily added to Placeholder by using a lookup. These custom gates significantly reduce the size of the
circuit required to perform a function, resulting in a faster proof construction process.

This allows you to gain performance advantages over other transparent zk-SNARKs (for example,
STARK [12]).

The system focuses on the general case application. It means that we do not try to provide the best
performance for some particular cases. Instead of this, we build a system that can be applied to any task
with the same efficiency.

2 Preliminaries

2.1 Notation

For n ∈ N we denote by [n] the set {0, 1, 2, . . . , n − 1}. We use the notation F<d
p [X] =

{f ∈ Fp[X] : deg(f) < d}. The Reed-Solomon code evaluated over domain D ⊆ Fp and rate ρ is de-
noted RS[Fp, D, ρ] = {φ : D → Fp | ∃f ∈ Fp[X] : deg(f) < ρ · |D| ∧ ∀x ∈ D f(x) = φ(x)}.

Let H = ⟨ζ⟩ with generator ζ ∈ F∗
p and order n. We use Li(X) ∈ F<n

p [X] to denote i-th Lagrange
polynomial, that satisfies Li(ζi) = 1, Li(ζj) = 0 for i, j ∈ [n], i ̸= j.

The protocol is defined as a non-interactive one, utilizing the Fiat-Shamir heuristic. The transcript
refers to the combination of the preprocessed common input, public input, and proof elements generated
by the prover to a certain point. We use transcript.append() and transcript.challenge(D) to represent the
update of transcript and generation of random challenges from domain D through the Fiat-Shamir method.

All vectors are denoted by bold lower case letters q. Matrices are denoted by bold capital letters TTT
and we write TTT j,i for element on i-th row and j-th column. We write a matrix TTT as TTT =

[
τ T

0 , . . . , τ T
m−1

]
where τT

i is the i-th column vector of TTT . The i-th coordinate of vj is denoted by vj,i or (vj)i.
For notational simplicity, we sometimes write sequence {xi}b

i=a as {xi} when range is clear from the
context.

Precommitment for polynomial batch polynomial = {f0, . . . , fl−1} are denoted polynomial
∧

and its
commitment are denoted polynomial.

2.2 Plonk Arithmetization

Here we describe our instantiation of PLONK with custom gates.
The computation sequence that needs to be proved is represented as Circuit. The Circuit is defined

by fixed parameters and various sets of constraints (Basic, Copy, Lookup) on the Execution trace of the
computation. Note that it is assumed that the Verifier does not know the entire Execution trace. A more
formal description is as follows.

The Execution trace stores values used during computations. It is represented by a rectangular matrix
TTT (which we’ll refer as Table) with Nrows rows and Ncol columns:

TTT =
[
τ T

0 , . . . , τ T
Ncol−1

]
.

There are 5 types of columns TTT .

• Witness columns contain witness input and intermediate calculations.
Witness columns differ between proof instances (because they depend on input). They are not known

2

Dra
ft

to the verifier. We denote witness columns by w = (w0, . . . , wNwt−1) where Nwt ∈ N, wi ∈ FNrows for
i = 0, . . . , Nwt − 1.

• Public columns contain public input for computation.
Public Columns differ between proof instances (because they depend on input). They are known
to the verifier. We denote public columns by s = (s0, . . . , sNpi−1) where Npi ∈ N, si ∈ FNrows for
i = 0, . . . , Npi − 1.

• Constant columns contain circuit-depended data.
Constant columns do not differ between proof instances. They are known to the verifier. We denote
constant columns by c = (c0, . . . , cNcn−1) where Ncn ∈ N, ci ∈ FNrows for i = 0, . . . , Ncn − 1.

• Selector columns define which rows of the Table the basic constraint is applied.
Selectors’ values can be only ones or zeroes. We denote selector columns by q = (q0, . . . , qNsl−1)
where Nsl ∈ N, qi ∈ {0, 1}Nrows for i = 0, . . . , Nsl − 1.

• Lookup columns define tables for membership testing. We denote lookup columns by l =
(l0, . . . , lNlk−1) where Nlk ∈ N, li ∈ Fp

Nrows for i = 0, . . . , Nlk − 1.

Assume without loss of generality that

TTT =
[
qT

0 , . . . , qT
Nsl−1, lT

0 , . . . , lT
Nlk−1, cT

0 , . . . , cT
Ncn−1, sT

0 , . . . , sT
Npi−1, wT

0 , . . . , wT
Nwt−1

]
,

where Nsl + Nlk + Ncn + Npi + Nwt = Ncol (see figure 1).

Figure 1: Structure of execution trace table TTT

Sets of constraints define relationships between values of TTT .

• Basic constraints are expressions for table values of a certain row (and possibly several adjacent
ones).
Let o – set of offsets for the row indices involved in the constraint. Usually, o = {−1, 0, 1}. The
j-th constraint (0 ≤ j < Cbs) is given in the form of a multivariate polynomial C′

j of total degree Cdg
over the table values:

C′
j({w0,i+o′}o′∈o, . . . , {wNwt−1,i+o′}o′∈o) = 0, where i – number of row, i ∈ [Nrows] (1)

An example of a basic constraint could be the following:

wj,i · wj+1,i + wj+1,i+1 − 1 = 0. (2)

Selectors are used to include/exclude a Basic Constraint check to/from the Row. Selectors are
included as a part of the assertion to do this. A set of Basic Constraints used with the same Selector
is called Gate. A gate may contain one or more constraints. Each Row has to satisfy all Gates of
the Circuit.

3

Dra
ft

• Copy constraints defines equality assertions between Cells.
Such constraints have following form TTT i,j = TTT i′,j′ .

• Lookup constraints assert that the chosen tuples of cells of the Table are equal to some rows in
lookup table L.
Note that Lookup Constraint does not define the precise place of the tuple in the Lookup Table. It
is the main difference between Lookup and Copy constraints. Such constraints have following form
(TTT i,j ,TTT i+1,j ,TTT i+2,j+1) ∈ L.

In order to arithmetize basic constraints we need to define how gates univariate polynomials are
constructed from constraints. Remind that gates contains a set of constraints with the same selector.

In practice, the table with Nrows rows is padded to get the number of rows n = 2d for some d ∈ N.
Let H ⊆ F∗

p – cyclic group with generator ζ: H = {ζ0, ..., ζn−1}. The bijection [n] → H make it
possible to consider τi as values of some polynomial on evaluation domain H. For each table column we
define interpolant polynomial from F<n

p [X] using Lagrange basis. For j-th witness column j ∈ [Nwt] we
have

wj(x) =
n−1∑
i=0

wj,i · Li(x).

Selector {si(x)}, constant {ci(x)}, lookup-tables {li(x)} and public input {si(x)} polynomials are given
analogously.

Each constraint C′ (see equation 1) may be written as polynomial Cj(X) = C′
j({wj(ζo′ ·

X)}o′∈o, j∈[Nwt]), X ∈ H. Then example 2 has the following form wj(ζi) · wj+1(ζi) + wj+1(ζi+1) − 1 = 0.
For constraint polynomials C0, . . . , Ck−1 used in i-th gate and corresponding random challenge θi, we

can represent i-th gate as: Gi(X) = qi(X) · (θ0
i C0(X) + · · · + θk−1

i Ck−1(X)).
For details on Copy and Lookup constraints arithmetization, we refer the reader to sections 3 and 4.

3 Permutation Argument

Here we describe the arithmetization of the copy constraints and permutation argument, which is used
as part of the protocol in Section 7. Permutation argument description is based on [10].

3.1 Permutation Argument Details

Copy constraints affect only part of the program execution trace. For simplicity of notation, we will
assume that the copy constraints are given for the matrix TTT ′, composed of the columns j1, . . . , jm of the
original matrix TTT :

TTT ′ = [τj1 , . . . , τjm] .

Let TTT ′ be the table representation of the part of the circuit’s trace with n rows and m columns. Denote
by TTT ′

j,i value of the cell (i; j), i ∈ [n], j ∈ [m] during circuit’s trace computation. Copy constraints are
represented by equalities of the following form

TTT ′
j,i = TTT ′

j′,i′ ,

and break table elements into disjoint cycles. Let the permutation σ̂ define a cycle structure on the matrix
TTT ′:

σ̂ : [m] × [n] → [m] × [n].

The permutation σ̂ can be obtained using the algorithm described in Section 3.2.
Let as above H = {ζ0, ..., ζn−1} be a cyclic subgroup of F∗

p, {Li(x)} – Lagrange basis for H. Let
γ ∈ Fp be a B-th root of unity, where B · 2d∗ + 1 = p, M is odd. Let γi · H for i = 0, . . . , m − 1 are distinct
cosets of H in F∗

p:
(γi · H) ∩ (γj · H) = ∅, i ̸= j.

Let H ′ = H ∪ (γ · H) ∪ · · · ∪ (γm−1 · H) and permutations e, σ : [m] × [n] → H ′:

e(j, i) = γjζi, σ(j, i) = e(σ̂(j, i)).

4

Dra
ft

Now we can arithmetize copy constraints by identity and permutation polynomials

Se
j (X) =

n−1∑
i=0

e(j, i)Li(X), 0 ≤ j < m,

Sσ
j (X) =

n−1∑
i=0

σ(j, i)Li(X), 0 ≤ j < m,

It is easy to check that Se
j (ζi) = γjζi and for each σ̂(j, i) = (j′, i′) we have Sσ

j (ζi) = γj′
ζi′

.

Let columns of TTT ′ are represented by polynomials fj ∈ Fp[X] in Lagrange basis. For pair of random
θ1, θ2 ∈ Fp we define polynomials

fe
j (X) = fj(X) + θ1 · Se

j (X) + θ2, fσ
j (X) = fj(X) + θ1 · Sσ

j (X) + θ2.

Let V σ ∈ Fp[X] such that V σ(ζ0) = 1 and for t = 1, . . . , n − 1

V σ(ζt) = V σ(ζt−1) ·
m−1∏
j=0

fe
j (ζt−1)

fσ
j (ζt−1) =

t−1∏
i=0

m−1∏
j=0

fe
j (ζi)

fσ
j (ζi) =

t−1∏
i=0

m−1∏
j=0

fj(ζi) + θ1 · Se
j (ζi) + θ2

fj(ζi) + θ1 · Sσ
j (ζi) + θ2

.

The constraint system will be considered fulfilled if the following conditions are met for any a ∈ H{
L0(a)(1 − Vσ(a)) = 0
V σ(a)

∏m−1
j=0 fe

j (a) = V σ(a · ζ)
∏m−1

j=0 fσ
j (a).

The constructed polynomials are used in the main protocol described in Section 7. In practice, the
table with Nrows rows is padded to get the number of rows n = 2d for some d ∈ N. Therefore, the specified
conditions may not be valid for the last rows. To solve this problem, we add to equations special selectors
polynomials. Let columns-selectors:

(qlast)i = 1, if i = Nrows, and 0, otherwise ,

(qpad)i = 1, if i > Nrows, and 0, otherwise .

Then qlast(x), qpad(x) – corresponding polynomials in Lagrange basis.
Thus, the calculation of the permutation argument and and its verification is given by algorithms 1, 2.

Algorithm 1 PermArgument
Input: f0, . . . , fm−1 : fi ∈ F<n

p [X], {Se
j (X)}, {Sσ

j (X)}, qlast(x), qpad(x), transcript
Output: F0, F1, F2, V σ

1: θ1, θ2 = transcript.challenge(F2
p)

2: Calculate fσ(X), fe(X):

fe(X) =
m−1∏
j=0

fe
j (X) =

m−1∏
j=0

(fj(X) + θ1 · Se
j (X) + θ2)

fσ(X) =
m−1∏
j=0

fσ
j (X) =

m−1∏
j=0

(fj(X) + θ1 · Sσ
j (X) + θ2)

3: Calculate V σ(x) for x = ζ0, . . . , ζn:

V σ(ζ) = V σ(ζn) = 1

V σ(ζt) = V σ(ζt−1) · fe(ζi)
fσ(ζi) for 0 < t < n

4: Calculate permutation-related numerators of the quotient polynomial:

F0(X) = L0(X)(1 − V σ(X))
F1(X) = (1 − (qlast(X) + qpad(X))) · (V σ(ζX) · fσ(X) − V σ(X) · fe(X))
F2(X) = qlast(X) · (V σ(X)2 − V σ(X))

5: return F0, F1, F2, V σ

5

Dra
ft

Algorithm 2 PermArgumentVerify
Input: V σ(y), V σ(ζ · y), {fi(y)}, {Se

i (y)}, {Sσ
i (y)}, qpad(y), qlast(y), L0(y), transcript

Output: F0(y), F1(y), F2(y)
1: θ1, θ2 = transcript.challenge(F2

p)
2: Denote fσ(y), fe(y):

fe(y) =
m−1∏
j=0

(fj(y) + θ1 · Se
j (y) + θ2)

fσ(y) =
m−1∏
j=0

(fj(y) + θ1 · Sσ
j (y) + θ2)

3: Calculate:

F0(y) = L0(y)(1 − V σ(y))
F1(y) = (1 − (qlast(y) + qpad(y))) · (V σ(ζy) · fσ(y) − V σ(y) · fe(y))
F2(y) = qlast(y) · (V σ(y)2 − V σ(y))

4: return F0(y), F1(y), F2(y)

3.2 Permutation Construction Algorithm

We use the same algorithm as Halo [13] .
We can split all copy constraints into a set of cycles such that cells in the same cycles are supposed

to have the same circuit’s trace value. For each set of equal cells TTT ′
a1,b1

= · · · = TTT ′
ak,bk

define a cycle
ι = (ι0 = TTT a1,b1 , . . . , ιk−1 = TTT ak,bk

). The circuit’s permutation is defined as a composition of these cycles.
Further in this paragraph we use single-letter notations x for table element for simplicity. However, it

is x = (j, i), where j is the cell’s column and i is the cell’s row.
The copy state is represented by three maps:

• aux that returns the distinguished element of each cycle:
if x is element of cycle ι

aux(x) = ι0;

If x, y belong to the same cycle, then aux(x) = aux(y).
• next (permutation itself) that return next element in cycle

if x is j-th element of cycle ι:
next(x) = ι(j+1) mod |ι|;

• size that returns the size of each cycle:
if x is element of cycle ι

size(aux(x))) = |ι|;

The process of construction the permutation is described by algorithms 3, 4.

Algorithm 3 Copy State Initialization
Input: –
Output: initialized copy state

1: for all x do: ▷ each x is one-element cycle
2: next(x) = x

3: aux(x) = x

4: size(x) = 1
5: end for

6

Dra
ft

Algorithm 4 Add Copy Constraint
Input: copy constraint «x = y»
Output: updated copy state

1: if if aux(x) = aux(y) then
2: return ▷ don’t do anything if x, y belong to the same cycle
3: end if
4: if size(aux(x)) < size(aux(y)) then
5: swap(x,y) ▷ Let x be an input with a larger cycle and y the other one.
6: end if
7: size(aux(x)) = size(aux(x)) + size(aux(y)) ▷ the right cycle will be merged into the left cycle
8: z = aux(y)
9: repeat ▷ set all pointers from y cycle to x cycle

10: aux(z) = aux(x)
11: z = next(z)
12: until z = aux(y)
13: tmp = next(x) ▷ actually merge cycles in next
14: next(x) = next(y)
15: next(y) = tmp

4 Lookup Argument

Here we describe the transformation from lookup constraints to lookup argument, which is used as
part of the protocol in Section 7. We use the lookup argument proposed in Halo [14].

4.1 Arithmetization Details

Lookup constraints require that the element values of some columns of table TTT belong to a predefined set
represented by other columns in the table. Let us describe these constraints more formally. Let j0, . . . , jm−1
and j′

0, . . . , j′
m−1 – indicies of columns of TTT . The lookup constraint is satisfied if ∀i ∈ [n] ∃i′ ∈ [n] :

TTT jt,i = TTT j′
t,i′ for t = 0, . . . , m − 1.

Let denote these columns as follows.

A = [a0, . . . , am−1] =
[
τj0 , . . . , τjm−1

]
,

L = [l0, . . . , lm−1] =
[
τj′

0
, . . . , τj′

m−1

]
.

We call A – Lookup Input, and L – Lookup Table. Note, that Nrows is equal to the number of usable
rows in TTT . We refer to {ai} as input columns and to {li} as lookup columns. Both A and L can contain
duplicate. If it is necessary to extend one of the sets, we extend L with duplicates and A with dummy
values known to be in L. The table L has not to be fixed. Any columns from L can be witness columns.

Let θ ∈ F is the verifier’s challenge. We compress the columns {ai}, {li} into Compressed Lookup
Input column a and Compressed Lookup column l as follow:

a = θm−1a0 + · · · + θam−2 + am−1
l = θm−1l0 + · · · + θlm−2 + lm−1.

Now we need to introduce notations for general lookup representation.
There are two parts of lookup argument similar to the original PLONK argument: permutation and

assertion check. Firstly, the prover permutes a, l in a such way that verification of inclusion lookup
queries into l is relatively simple task. After that, the prover provides a permutation argument for the
permuted columns. Finally, they prove that the values from the permuted a is subset of the values from
the permuted l.

7

Dra
ft

4.2 Permutation

Firstly, the prover calculates two additional columns aperm and lperm that are permutations of a and l

respectively.
The permutations for the new columns are defined by the following rules.

• All the cells of column aperm are arranged so that like-valued cells are vertically adjacent to each
other. The order of these like-valued groups is not matter.

• The first row in a sequence of like values in aperm is the row that has the corresponding value in
lperm. The order of the other values in lperm can be arbitrary.

Similarly to Section 3, we use a grand product argument [1] to prove that aperm, lperm are permutations
of a, l.

4.3 Assertion Check

The permuted columns are constructed in a such way that we can assert that all elements from aperm

are presented in lperm with the following rules:

1. (aperm(X) − lperm(X)) · (aperm(X) − aperm(ζ−1X)) = 0
to ensure that either (aperm)j = (lperm)j or (aperm)j = (aperm)j−1;

2. L0(X) · (aperm(X) − lperm(X)) = 0
we need it because (aperm(X) − aperm(ζ−1X)) is not a valid check on the first row.

In order to achieve zero-knowledge we use polynomials qlast(X), q
pad(X) as before. So we have the

following constraints:

1. (1 − (qlast(X) + qpad(X))) · (VL(ζX) · (aperm(X) + θ1) · (lperm(X) + θ2) − VL(X) · (acompr(X) + θ1) ·
(lcompr(X) + θ2)) = 0,

2. (1 − (qlast(X) + qpad(X))) · (aperm(X) − lperm(X)) · (aperm(X) − aperm(ζ−1X)) = 0,

3. qlast(X) · (VL(X)2 − VL(X)) = 0.

4.4 Generalization

Each lookup input’s cell can be any polynomial expression and use the relative references in the lookup
constraint. It influences on the way how the column aperm is calculated.

Let k-th lookup constraint k = 0, . . . , Clk −1 given by ν(k) column indices jk
0 , . . . , jk

ν(k)−1, corresponding
offsets dk

0 , . . . , dk
ν(k)−1 ∈ o and lookup table columns uk

0 , . . . , uk
ν(k)−1 determine the following equalities:

∃i′ ∈ [n] : ∀i ∈ [ν(k)] : ajk
i

,i+dk
i

= luk
i

,i′

To combine multiple lookup constraints into one argument, we add one more random challenge. Denote
a random challenges by θ.

Thus, the lookup expression would be:

lookup_gatej(X) = qlj ·
Clk−1∑
k=0

ν(k)−1∑
i=0

θNk+iajk
i
(ζdk

j · X), where Nk =
k−1∑
i=0

ν(i).

The compressed lookup input:

acompr(ζj) =
∑

0≤i<Clk
lookup_gatei(ζj)

The compressed lookup table is computed similarly to compressed lookup input:

8

Dra
ft

table_valuej(X) =
Clk−1∑
k=0

ν(k)−1∑
i=0

θNk+iljk
i
(X), where Nk =

k−1∑
i=0

ν(i)

lcompr(X) =
∑

0≤i<Nlk

table_valuei(X)

4.5 Small Tables

Note that we can arrange multiple tables in the same columns using tag column.

For instance, let L(1) =
[
l
(1)
0 , l

(1)
1

]
, L(2) =

[
l
(2)
0 , l

(2)
1

]
be two lookup tables with 4 rows. Two lookup

expression corresponds to L(1), L(2). These tables can be located in the separate way:

ql1 l
(1)
0 l

(1)
1 ql2 l

(2)
0 l

(2)
1

. . . 0 1 . . . 4 5

. . . 1 1 . . . 5 6

. . . 2 1 . . . 6 7

. . . 3 0 . . . 7 8

However, Nrows ≫ 4 in a typical case. This means that the prover has to complete these columns to
Nrows and commit all of them. Instead of this, we can arrange the tables in the following way:

ql1 ql2 tag l0 l1
. 1 0 1
. 1 1 1
. 1 2 1
. 1 3 0
. 2 4 5
. 2 5 6
. 2 6 7
. 2 7 8

It allows saving up to (Ncon_tables −1) ·max_columns−1 columns, where max_columns is the maximum
number of columns in all Ncon_tables concatenated tables.

9

Dra
ft

4.6 Lookup Arguments

Algorithm 5 LookupArgument
Input: a0, . . . , am−1, transcript
Output: F3, F4, F5, F6, F7, VL, lookupperm, lookupperm

∧

1: θ = transcript.challenge(F)
2: For j = 0, . . . , Nlk − 1 (see Section 4.4 for details):

lookup_gatej(X) = qlj ·
Clk−1∑
k=0

ν(k)−1∑
i=0

θNk+iajk
i
(ζdk

j · X), where Nk =
k−1∑
i=0

ν(i)

table_valuej(X) =
Clk−1∑
k=0

ν(k)−1∑
i=0

θNk+iljk
i
(X),

3: Construct the input lookup compression and table compression values for 1 ≤ j ≤ Nrows:

acompr(ζj) =
∑

0≤i<Nlk

lookup_gatei(ζj)

lcompr(ζj) =
∑

0≤i<Nlk

table_valuei(ζj)

4: Produce the permutation polynomials aperm(X) and lperm(X) according to Section 4.2.
5: lookupperm = {aperm, lperm},

6: lookupperm
∧

= MT.Precommit(lookupperm),
7: transcript.append(MT.Commit(lookupperm

∧

))
8: β2, γ2 = transcript.challenge(F)
9: Compute VL(X) such that:

VL(1) = VL(ωNrows) = 1

VL(ωj) =
j−1∏
i=0

(acompr(ωi) + β2)(lcompr(ωi) + γ2)
(aperm(ωi) + β2)(lperm(ωi) + γ2) for 0 < j < Nrows

10: Calculate gL(X), hL(X):

gL(X) = (acompr(X) + β2) · (lcompr(X) + γ2)
hL(X) = (aperm(X) + β2) · (lperm(X) + γ2)

11: Calculate lookup-related numerators of the quotient polynomial:

F3(X) = L0(X)(1 − VL(X))
F4(X) = VL(ωX) · hL(X) − VL(X) · gL(X)
F5(X) = qlast(X) · (VL(X)2 − VL(X))
F6(X) = L0(X)(aperm(X) − lperm(X))
F7(X) = (1 − (qlast(X) + qpad(X))) · (aperm(X) − lperm(X)) · (aperm(X) − aperm(ω−1X))

12: return F3(X), F4(X), F5(X), F6(X), F7(X), VL, lookupperm, lookupperm
∧

10

Dra
ft

Algorithm 6 LookupArgumentVerify
Input: lookupperm, {ai(y)}, {li(y)}, aperm(y), aperm(ζ−1 · y), lperm(y), VL(y), VL(ζ · y),

L0(y), qlast(y), qpad(y), transcript
Output: F3(y), F4(y), F5(y), F6(y), F7(y)

1: Get challenge θ ∈ F from transcript

lookup_gatej(y) = qlj ·
Clk−1∑
k=0

ν(k)−1∑
i=0

θNk+iajk
i
(ζdk

j · y), where Nk =
k−1∑
i=0

ν(i)

table_valuej(y) =
Clk−1∑
k=0

ν(k)−1∑
i=0

θNk+iljk
i
(y),

2: Construct the input lookup compression and table compression values for 1 ≤ j ≤ Nrows:

acompr(y) =
∑

0≤i<Nlk

lookup_gatei(y)

lcompr(y) =
∑

0≤i<Nlk

table_valuei(y)

3: transcript.append(lookupperm)
4: Get challenges β2, γ2 ∈ F from transcript
5: Denote:

gL(y) = (acompr(y) + β2) · (lcompr(y) + γ2)
hL(y) = (aperm(y) + β2) · (lperm(y) + γ2)

6: Calculate:

F3(y) = L0(y)(1 − VL(y))
F4(y) = (1 − (qlast(y) + qpad(y))) · (VL(ζy) · hL(y) − VL(y) · gL(y)
F5(y) = qlast(y) · (VL(y)2 − VL(y))
F6(y) = L0(y)(aperm(y) − lperm(y))
F7(y) = (1 − (qlast(y) + qpad(y))) · (aperm(y) − lperm(y)) · (aperm(y) − aperm(ζ−1y))

7: return F3(y), F4(y), F5(y), F6(y), F7(y)

5 Placeholder Commitment Scheme

In this section, we describe the commitment scheme used in the Placeholder system. This scheme is
based on LPC [6], which is generalization of polynomial commitment scheme. Commitment scheme is
executed on a batch of polynomials {fi(x)}l−1

i=0 where number of polynomials l is one of scheme parameters.
List polynomial commitment implies that in the query phase for point x, the values f ′

i(x) is returned
(instead of fi(x)), where

∆(fi, f ′
i) < δ, f ′ ∈ RS[Fp, D, ρ].

Let d ∈ Z be the minimum for which 2d ≥ Nrows, as above. The Reed-Solomon code RS[Fp, D, ρ] is set
by the parameters ρ = 2−R, R ∈ N, |D| = 2k, k = d + R.

5.1 Scheme Parameters

The binding scheme is parameterized with the following values.

• FRI localization factor m. Default value m = 2.
• Folding map q(X) = Xm, denote qj(X) a result of j times application map q applied on X. In our

case it qj(x) = X2j .
• 2d = 2k−R – max degree of polynomial for FRI protocol

11

Dra
ft

• r ∈ [1; log d] – total number of FRI-rounds
• l – number of polynomials
• K – number of polynomials’ precommitments.

• l0, . . . , lK−1 :
K∑

i=0
li = l number of polynomials for each precommitment.

• Domains D0, . . . Dr−1, such that:
– Di ⊂ F
– D0 = [ζ, . . . , ζn].
– Di+1 = q(Di)
– |Di+1| = |Di|

m = |D0|
mi+1

• Error-bound δ > 0
• stepsFRI – number of FRI round proofs in FRI proof

• r0,rstepsFRI−1 :
stepsFRI−1∑

i=0
ri = r, number of rounds in each step

• rq – number FRI-queries are necessary for constructing FRI-proof;

5.2 Proof format
• LPC proof P contains:

– Vector of evaluation values for each polynomial z0, . . . , zl−1
– FRI proof π

• FRI proof π contains:
– Merkle roots fri_root0, . . . , fri_rootstepsFRI for commitments for each FRI step.
– Query proof π(i) for 0 ≤ i < rq

– final_polynomial = {c∗
0, . . . , c∗

k}, k = 2log(d−l−r)

• Query proof π(i) for FRI contains:
– Initial proof π(i)∗

– Round proofs π
(i)
j for 0 ≤ j < stepsFRI

• Initial proof for FRI contains:
– Vector of evaluation values for each polynomial vali for 0 ≤ i < l. Length of each vali equals

mr0 .
– Merkle tree paths pk for 0 ≤ k < K

• Round proof for FRI contains:
– Values for the one combined polynomial y. Size of y equals 2ri

– Merkle tree path auth

5.3 Implemented optimizations

In current version of algorithm FRI-proof π doesn’t contain all r round proofs. There are only stepsFRI
of them. Algorithm executes ri FRI-rounds on i-th step to produce πF RI

i . Total number of FRI-rounds is
r.

Instead of committing each of the polynomials, we use the same Merkle tree for several polynomials.
This leads to the decrease of the number of Merkle tree paths which are required to be provided by the
prover. See [15], [6] for details.

Each i + 1 FRI round supposes the prover to send all elements from a coset H ∈ D(i). Each Merkle
leaf is able to contain the whole coset instead of separate values. See [15] for details. Similar approach is
described in [6]. However, the authors of [6] use more values per leaf, that leads to better performance.

Instead of checking each commitment individually, we aggregate them for FRI. For polynomials
f0, . . . , fl:

1. Get τ from transcript

2. f(X) =
∑l−1

k=0 τ l−k−1fk(X)

12

Dra
ft

3. Run FRI over f , using precommitments to f0, . . . , fl

Thus, we run only one FRI instance for all committed polynomials. See [6] for details.

5.4 LPC Preprocessing

In the scheme commit/opening for a polynomials {fi} describe a δ-list of functions f ′
i such that

∆(fi, f ′
i) < δ for i = 0, . . . , l − 1,

where ∆ is Hamming weight function.
For the polynomials that define a circuit, we require one more check. Each commit/opening should

describe exactly one polynomial from the list. For that, Preprocessing step is used.

Algorithm 7 Preprocessing
Input: Set of polynomials {gi(X)}l−1

i=0 that are required to be preprocessed
Output: Set of distinguishing points {ξi, νi}l−1

i=1, where νi = g

1: for all gi(X) (i = 1, . . . , n) do
2: Prover and Verifier agree on distinguishing point xi ∈ F and value νi = gi(xi), such that:

∀g′ ∈ Lδ(gi) : g′(xi) ̸= gi(xi), where Lδ(f) := {f ′ : f ′ ∈ RS[Fp, D, ρ] ∧ ∆(f, f ′) < δ}.

3: end for

5.5 Merkle trees usage

To commit polynomial values protocol uses Merkle tree MT. The MT needs following algorithms:

• Create(leaves) – each leaf of Merkle tree commits values of polynomials {fi}l−1
i=0 on cosets S ⊂ D.

Coset has the following structure S = ∀si, sj ∈ S : qr(si) = qr(sj) for some r.
• Proof(tree, leaf) – generates Merkle proof for the leaf.
• Validate(proof, leaf) – checks if proof corresponds leaf data. Input of this function should contain

fi(s)∀i = 0, . . . , l − 1, s ∈ S.
• Precommit({fi}l−1

i=0, D, r) – Splits domain D into cosets, and generates Merkle tree (see algorithm 8).
• Commit(T) – returns root of tree T .

Algorithm 8 MT.Precommit
Input: polynomials {fi(X)}l−1

i=0, domain D, r – coset size parameter.
Output: Merkle tree T .

1: Split domain D into cosets {S ⊂ D : ∀si, sj ∈ S, qr(si) = qr(sj)}. If m = 2 |S| = 2r.
2: For each coset S calculate f over all elements of S : leafS = {fi(x)}i=0,...,l−1,x∈S . Number of leaves

is |D|
|S|

3: Build Merkle tree T = MT.Create({leafS}).
4: T is precommitment.

13

Dra
ft

5.6 Proof eval

Algorithm 9 LPC.EvalProof
Input:

l polynomials g0, . . . , gl−1, splitted into K sequental subsets with sizes l0, . . . , lK , where
∑K

i=0 li = l;
vector of evaluation points ξ(i) for each polynomial gi;
Merkle trees T0, . . . , TK where Tk is precommitment for k-th subset g∑k

i=0
li

, . . . g(
∑k+1

i=0
li)−1 for 0 ≤ k < K;

transcript
Output: Proof P

1: Calculate z
(k)
j = gk(ξ(k)

j) for 0 ≤ k < l, 0 ≤ j < |ξ(k)|
2: MultiEval:
3: for all k from 0 to l − 1 do
4: Interpolate Uk(X) such that Uk(ξ(k)

j) = z
(k)
j for 0 ≤ j < |ξ(k)|

5: ▷ Uk(X) ̸= gk(X) since deg(Uk) < deg(gk)
6: Calculate Qk(X) = gk(X)−Uk(X)∏|ξ(k)|−1

j=0
(X−ξ

(k)
j

)
with deg(Qk) ≤ d′ = d − |ξ(k)|

7: end for
8: π = FRI.Proof(Q0(X), . . . , Ql−1(X), g0(X), . . . , gl−1(X), T0, . . . , TK−1, transcript) with rate ρ = d′

|D|
and error-bound δ

9: P = {z(0), . . . , z(l−1), π}

14

Dra
ft

Algorithm 10 FRI.Proof
Input: Polynomials {Qk(X)}l−1

k=0, {gk(x)}l−1
k=0, Merkle trees {Tk}K−1

k=0 , transcript
Output: Proof π

1: D(0) = D, D(i+1) = qri

(
D(i)), for i = 0, . . . , stepsFRI − 1

2: Commit phase:
3: for all k from 0 to K − 1 do
4: transcript.append(MT.Commit(Tk))
5: end for
6: τ = transcript.challenge(F)

7: Calculate polynomial Q(X) :=
l−1∑
k=0

τ l−k−1Qk(X)

8: f0(X) = Q(X)
9: t = 0

10: for all i = 0, . . . , stepsFRI − 1 do
11: treei := MT.Precommit(fi(X), Di(X), ri)
12: fri_rooti := MT.Commit(treei)
13: transcript.append(fri_rooti)
14: f(X) := fi(X)
15: for all step = 0, . . . , ri − 1 do
16: αt := transcript.challenge(F)
17: f ′(X) := interpolantf

αt
(X) where f ′(X) is defined on D(t+1) this way:

∀s ∈ D(t+1), S = {sj ∈ D(t)|q(sj) = s}, |S| = m

interpolantf
αt

(s) = lagrange_interpolation({sj , f(sj)}sj∈S)(αt)

18: f(X) := f ′(X), t := t + 1
19: end for
20: fi+1(X) := f(X)
21: end for
22: final_polynomial(X) = fstepsFRI(X)
23: Query phase:
24: for all query = 0, . . . , queriesFRI − 1 do
25: x(0) := transcript.challenge(D0)
26: x(i+1) := qri(x(i)), for i = 0, . . . , stepsFRI − 1
27: Construct cosets S(i) = {s ∈ D(i) | qri(s) = x(i+1)},
28: S(stepsFRI) = {x(stepsFRI)} for i = 0, . . . , stepsFRI − 1 ▷ |S(i)| = mri

29: t = 0;
30: for all k = 0, . . . , K do
31: val(j) := {gj(s) ∀s ∈ S(i)}, t ≤ j < t + lk − 1
32: pk := MT.Proof(Tk, {val(t), . . . , val(t+lk−1)})
33: t := t + lk
34: end for
35: Construct initial proof π∗ = {val(0), . . . , val(l−1), p0, . . . , pK−1}
36: y(0) := {f0(s), ∀s ∈ S(0)} ▷ f0(X) = Q(X)
37: for all i := 0, . . . , stepsFRI − 1 do
38: authi := MT.Proof(treei, y(i))
39: y(i+1) := {fi+1(s), ∀s ∈ S(i+1)}
40: Construct round proof πi = {authi, y(i+1)}
41: end for
42: Construct query proof π(round) = {π∗, π0, . . . , πstepsFRI−1}
43: end for
44: Construct FRI proof π = {fri_root0, . . . , fri_rootK−1, final_polynomial, π(0), . . . , πqueriesFRI−1}

15

Dra
ft

5.7 Verify eval

Algorithm 11 LPC.EvalVerify
Input:

proof P,
evaluation points {ξ(k)}l−1

k=0,
roots of Merkle trees {rootk}K−1

k=0 ,
transcript

Output: verification result = true/false
1: {z(0), . . . , z(l−1), π} = parse(P)
2: Interpolate polynomials Uk(X) = lagrange_interpolation({ξ

(k)
j , z

(k)
j }) for 0 ≤ k < l, 0 ≤ j < |ξ(k)|

3: Compute Vk(X) =
∏|ξ(k)|−1

j=0 (X − ξ
(k)
j)

4: if FRI.Verify(π, {rootk}K
k=0, {Uk(X)}l−1

k=0, {Vk(X)}l−1
k=0, transcript) = false then return false

5: return true

16

Dra
ft

Algorithm 12 FRI.Verify
Input: FRI proof π, Merkle roots {T_rootk}K−1

k=0 , {Uk(X)}l−1
k=0, {Vk(X)}l−1

k=0, transcript
Output: verification result = true/false

1: {fri_root0, . . . , fri_rootstepsFRI−1, π(0), . . . π(rq−1), final_polynomial} = parse(π)
2: D(0) = D, D(i+1) = qri

(
D(i)), for i = 0, . . . , stepsFRI − 2

3: for all k = 0, . . . , L − 1 do
4: transcript.append(T_rootk)
5: end for
6: τ := transcript.challenge(F)
7: t := 0
8: for all i := 0, . . . , stepsFRI − 1 do
9: transcript.append(fri_rooti)

10: for all step := 0, . . . , ri − 1 do
11: αt := transcript.challenge(F)
12: t := t + 1
13: end for
14: end for
15: for all query = 0, . . . , rq − 1 do
16: {π∗, π0, . . . , πstepsFRI−1} = parse(π(round))
17: x(0) = transcript.challenge(D0)
18: x(i+1) = qri(x(i)), i = 0, . . . , stepsFRI − 1
19: Construct cosets S(i) = {s ∈ D(i) | qri(s) = x(i+1)}, for i = 0, . . . , stepsFRI − 1 ▷ |S(i)| = mri

20: Initial proof check
21: t := 0;
22: for all k := 0, . . . , K − 1 do
23: if π∗.authk.root ̸= T_rootk then return false

24: if MT.Validate(π∗.authk, {π∗.val(t), . . . , π∗.val(t+lk−1)}) = false then return false

25: t := t + lk
26: end for
27: Compute values of combined polynomial Q values val from πk.val

val =
{

l−1∏
k=0

τ l−k−1 π∗.val(k)
s − Uk(s)
Vk(s)

}
s∈S(0)

28: Round proofs check
29: t := 0, S := S(0)

30: for all i := 0, . . . , stepsFRI − 1 do
31: if πi.auth.root ̸= π.fri_rooti then return false

32: if MT.Validate(πi.auth, val) = false then return false

33: for all step := 0, . . . , ri − 1 do
34: Snext := {q(s)}s∈S

35: interpolants := lagrange_interpolation({sj , valsj
}q(sj)=s)(αt) for s ∈ Snext

36: t := t + 1, S := Snext, val := {interpolants}s∈Snext ▷ |Snext| = ri − step − 1
37: end for
38: if val ̸= πi.y(x(i+1)) then return false ▷ |val| = 1
39: val := πi.y

40: end for
41: if final_polynomial(x(stepsFRI)) ̸= val then return false

42: end for
43: return true

17

Dra
ft

5.8 Soundness

According to [16] the soundness error of LPC is defined by ε(δ) ≤ max{εFRI, εIOP, 1/|F|}, where

εIOP =
(

1
2η

√
ρ

)6
· 4n

|F \ D|
,

εFRI(δ) ≤ 2 · n

η3|F|
+ (3

√
ρ + 2 3

√
η + η · n)lFRI .

6 KZG Commitment Scheme

A polynomial commitment scheme is a tuple of algorithms (Gen, Commit, EvalProof, EvalVerify). The
trusted setup algorithm Gen takes as input maximum supported degree bound d (and maximum number t

of evaluation points in case of batched version) and outputs public structured reference string srs. The
prover can then commit to polynomial f ∈ F<d

p [X] using srs: Commit(f, srs) = cm. Subsequently, the
prover can invoke EvalProof to produce a proof π that convinces the verifier who runs the EvalVerify, that
the polynomial «inside» cm has the degree less than d and, moreover, evaluate to the claimed value s

(values {si}t−1
i=0 for batched version) at a given evaluation point z (points {zi}t−1

i=0 – respectively).
Polynomial commitment schemes KGZ, introduced in [11], uses a triple of groups (G1, G2, G3) with an

efficiently computable non-degenerate bilinear pairing e : G1 ×G2 → G3. Let Pi be generators of Gi for i =
1, 2, 3. We denote x·Pi by [x]i for i = 1, 2 and any x ∈ Fp. A trusted setup Gen generates srs which contains
powers of a random field element α ∈ Fp: (P1, α · P1, ..., αd−1 · P1, P2, α · P2). The value of α must remain
secret. For any polynomial f ∈ F<d

p [X], f =
∑d−1

i=0 ciX
i commitment to f defined by Commit(f) = [f(α)]1

that can be calculated using srs: [f(α)]1 =
(∑d−1

i=0 ci · αi
)

· P1 =
∑d−1

i=0 ci · srsi. To prove that f(z) = s, the
EvalProof simply outputs a commitment π = [h(α)]1 to the quotient polynomial h = (f(X) − s)/(X − z).
A correctly generated proof will satisfy e(π, [α]2 − [z]2) = e(h(α) · P1, (α − z)P2) = e((f(α) − s) · P1, P2).
The proof is accepted by the verifier (EvalVerify) if and only if e([f(α)]1 − [s]1, [1]2) = e(π, [α − z]2).

For the performance of the Placeholder, it is highly desirable to use a version of the protocol that
allows it to query multiple committed polynomials at multiple points at a time. An efficient batch version
of the KZG is described in [17]. We refer to this scheme as KZG1. In algorithms 13, 14, 15 we provide a
detailed description of the scheme.

18

Dra
ft

Algorithm 13 KZG1.Gen
Input: d, t

Output: srs
1: α ∈R Fp

2: srs = ([1]1, [α]1, . . . , [αd−1]1, [1]2, [α]2, . . . , [αt]2)

Algorithm 14 KZG1.EvalProof
Input: srs, T = {z0, . . . , zt−1},

{Si ⊂ T}i∈[k], {fi}i∈[k], transcript
Output: π

1: θ = transcript.challenge(Fp)
2: Calculate polynomials {ri(X)}i∈[k]:

ri ∈ F<|Si|
p [X] : ∀z ∈ Si : ri(z) = fi(z)

3: Calculate polynomial h(X):

h(X) =
k−1∑
i=0

θi · fi(X) − ri(X)
ZSi(X)

4: Compute π = [h(α)]1
5: transcript.append(π)
6: return π

Algorithm 15 KZG1.EvalVerify
Input: π, srs, T = {z0, . . . , zt−1},

{Si ⊂ T}i∈[k], {fi}i∈[k], {ri}i∈[k],

{cmi = [fi(α)]1}i∈[k], transcript
Output: true/false

1: Get challenges θ ∈ Fp from transcript
2: Calculate {Zi}i∈[k]:

Zi = [ZT \Si
(α)]2

3: Calculate F :

F =
k−1∏
i=0

e(θi · (cmi − [ri(α)]1), Zi)

4: if F = e(π, [ZT (α)]2) then
5: return true
6: else
7: return false
8: end if

We also allow using another batch version of KZG, as described in [17]. We refer to it as KZG2. The
evaluation proof of this scheme consists of two group elements, but it has better verifier complexity. We
present the KZG2 algorithms in 17, 16, 18. Notice that the commit algorithm is again defined in the
standard way: KZG2.Commit(f, srs) = [f(α)]1.

19

Dra
ft

Algorithm 16 KZG2.EvalProof
Input: srs, {fi}i∈[k],

T = {z0, . . . , zt−1}, {Si ⊂ T}i∈[k], transcript
Output: π

1: θ = transcript.challenge(Fp)
2: Calculate polynomials {ri(X)}i∈[k]:

ri ∈ F<|Si|
p [X] : ∀z ∈ Si : ri(z) = fi(z)

3: Calculate polynomial f(X):

f(X) =
k−1∑
i=0

θi · ZT \Si
(X) · (fi(X) − ri(X))

4: π1 = [(f/ZT)(α)]1
5: transcript.append(π1)
6: θ2 = transcript.challenge(Fp)
7: Calculate polynomial L(X):

L(X) =
k−1∑
i=0

θi · ZT \Si
(θ2) · (fi(X) − ri(θ2))−

− ZT (θ2) ·
(

f(X)
ZT (X)

)
8: Compute π2 = [(L/(X − θ2))(α)]1
9: transcript.append(π2)

10: return π = (π1, π2)

Algorithm 17 KZG2.Gen
Input: d

Output: srs
1: α ∈R Fp

2: srs = ([1]1, [α]1, . . . , [αd−1]1, [1]2, [α]2)

Algorithm 18 KZG2.EvalVerify
Input: srs, {fi}i∈[k], T =

{z0, . . . , zt−1}, {Si ⊂
T}i∈[k], π, {ri}i∈[k], transcript

Output: true/false
1: Get challenges θ, θ2 ∈ Fp from transcript
2: Calculate F :

F =
k−1∑
i=0

θi · ZT \Si
(θ2) · (cmi − [ri(θ2)]1)−

− ZT (θ2) · π1

3: if e(F, [1]2) = e(π2, [α − θ2]2) then
4: return true
5: else
6: return false
7: end if

20

Dra
ft

7 Placeholder Protocol

7.1 Protocol Parameters

Here we summarize system parameters described earlier.

Parameter Meaning
Nrows Number of rows TTT
Ncol Number of columns TTT
Nsl Number of selector columns
Nlk Number of lookup-table columns
Ncn Number of constant columns
Npi Number of public input columns
Nwt Number of witness columns
qi, qi(x) i-th selector column of TTT and corresponding interpolant polynomial
li, li(x) i-th lookup-table column of TTT and corresponding interpolant polynomial
ci, ci(x) i-th constant column of TTT and corresponding interpolant polynomial
si, si(x) i-th public input column of TTT and corresponding interpolant polynomial
wi, wi(x) i-th witness column of TTT and corresponding interpolant polynomial
Nperm Number of witness columns that are included in the permutation argument
Cbs Number of constraints polynomials
Cdg Max total degree of basic constraints polynomials
Clk Number of lookup constraints
o Set of all offsets
Ci(x) Constraint polynomials, 0 ≤ i < Cbs
Gi(x) Gate polynomials, 0 ≤ i < Cgt for selector qi(X)
σ̂(col : j, row : i) =
(col : j′, row : i′)

Permutation over the table

Table 1: System parameters

At the begining of the algorithm we prepare some polynomials and their precommitments to be sent
to commtiment scheme. This is the table of all polynomails we need and necessary evaluation points for
each polynomial.

Polynomials Evaluation points
variable

{wi(X)}Nwt−1
i=0 y, ζd · y for all correcponding d ∈ o

{si(X)}Npi−1
i=0 y, ζd · y for all correcponding d ∈ o

V_polynomials
V σ(X) y, ζ · y

VL(X) y, ζ · y

lookupperm

aperm(X) y, ζ−1 · y

lperm(X) y

quotient
{Ti(X)}NT

i=0 y

fixed
{Se

i (X), Sσ
i (X)}Nperm−1

i=0 , qlast(X), qpad(X), L0(X) y

{ci(X)}Ncn−1
i=0 , {li(X)}Nlk−1

i=0 , {1i(X)}Nsl−1
i=0 y, ζd · y for all correcponding d ∈ o

Table 2: Evaluation points

21

Dra
ft

For details on polynomial commitment scheme and polynomial evaluation scheme, we refer the reader
to [6].

7.2 Preprocessing

Algorithm 19 Prove
Output: preprocessed_data

1: Init transcript with public data
2: Let ζ ∈ Zq be a primitive 2d-th root of unity, H = {ζ0, ..., ζn−1} be a cyclic subgroup of F∗

3: Calculate public polynomials from public table TTT columns:

{l0(x), . . . , lNlk−1(X), q0(x), ..., qNsl−1(x), s0(x), . . . , sNcn−1(x)}

4: Let d ∈ Zq be the minimum for which this n = 2d ≥ Nrows.
5: Let γ be a B root of unity, where B · 2d∗ + 1 = p, d ≤ d∗, B odd and p is a size of the field.
6: Compute Nperm identity permutation polynomials: Se

i (X) such that Se
i (ζj) = γi · ζj

7: Compute Nperm permutation polynomials Sσ
i (X) such that Sσ

i (ζj) = γi′ · ζj′

8: Compute polynomial qlast(X), an interpolation of vector qlast
i : qlast

i = 1 for i = Nrows and 0 overwise.
9: Compute polynomial qpad(X) , an interpolation of vector qpad

i : qlast
i = 1 for i > Nrows and 0 overwise.

10: Compute lagrange polynomial L0(X).
11: Accumulate a batch of polynomials that are known by prover and verifier and are not dependent of

public input. They will be sent to the commitment scheme together.

fixed = {Se
0 , . . . , Se

Nperm−1, Sσ
0 , . . . , Sσ

Nperm−1, c0, . . . , cNcn−1, q0, . . . , qNsl−1, l0, . . . , lNlk−1, qlast, qlast, L0}

12: fixed
∧

= MT.Commit(fixed)
13: Z(X) =

∏
a∈H(X − a) = XNrows − 1

14: return preprocessed_data = {fixed, fixed
∧

, Z(X)}

7.3 Prover View

The commitment scheme is described in Section 5. Details on the optimizations are in Section 8.

22

Dra
ft

Algorithm 20 Prove
Output: πPlaceholder, preprocessed_data

1: Accumulate table columns which depends on public input into batch

variable = {w0, . . . , wNwt−1, s0, . . . , sNpi}

2: variable
∧

= MT.Precommit(variable), variable = MT.Commit(variable
∧

), transcript.append(variable)
3: Denote polynomials included in permutation argument as f0, . . . , fNperm−1

F0(X), F1(X), F2(X), V perm = PermArgument(f0, . . . , fNperm−1, {Se
j (X)},

{Sσ
j (X)}, qlast(x), qpad(x), transcript)

4: Denote polynomials included in lookup argument as a0, . . . , aNlk−1

F3(X), F4(X), F5(X), F6(X), F7(X), VL, lookupperm, lookupperm
∧

= LookupArgument(a0, . . . , aNlk−1, transcript)

5: V_polynomials = {V σ, VL}
6: V_polynomials
∧

= MT.Precommit(V_polynomials)
7: V_polynomials = MT.Commit(V_polynomials
∧

), transcript.append(V_polynomials)
8: θ = transcript.challenge(F)
9: For i = 0, . . . , Nsl − 1 : gi(X) = qi(X) · (θki−1+νiCi0(X) + · · · + θνiCik−1(X))

10: Calculate a constraints-related numerator of the quotient polynomial:

F8(X) =
∑

0≤i<Nsl

(gi(X))

11: α0, . . . , α8 = transcript.challenge(F)
12: Compute quotient polynomial T (X):

F (X) =
8∑

i=0
αiFi(X), T (X) = F (X)

Z(X)

13: NT := max(Nperm, deggates − 1), where deggates is the highest degree of the degrees of gate polynomials
14: Split T (X) into separate polynomials quotient = {T0(X), ..., TNT −1(X)}
15: quotient
∧

= MT.Precommit(quotient)
16: quotient = LPC.Commit(quotient

∧
), transcript.append(quotient)

17: y = transcript.challenge(F/H), y ∈ F/H

18: The proof is πPlaceholder = (πcomm, πeval), where:

πcomm = { variable, V_polynomials, lookupperm, quotient, fixed}
πeval = LPC.EvalProof(

variable, V_polynomials, lookupperm, quotient, fixed,

evaluation_points,

variable
∧

, V_polynomials
∧

, lookupperm
∧

, quotient
∧

, fixed
∧

,

transcript)

Evaluation points for each polynomials are defined in table 2.

23

Dra
ft

7.4 Verifier View

Algorithm 21 Verify
Input: πPlaceholder, preprocessed_data, transcript
Output: true/false

1: Parse proof πPlaceholder into:

πcomm = { variable, V_polynomials, lookupperm, quotient, fixed}
πeval is evaluation proofs for
polynomial_evaluations = {

wi(y), wi(ζd · y), i = 0, . . . , Nwt − 1, si(y), si(ζd · y), i = 0, . . . , Npi − 1
for all corresponding d ∈ o,

V σ(y), V σ(ζ · y), aperm(y), aperm(ζ−1 · y), lperm(y), VL(y), VL(ζ · y),
{Ti(y)}, i = 0, . . . , NT − 1
ci(y), ci(ζd · y), i = 0, . . . , Ncn − 1, li(y), li(ζd · y), i = 0, . . . , Nlk − 1, qi(y), qi(ζd · y), i = 0, . . . , Nsl − 1

for all corresponding d ∈ o,

qlast(y), qpad(y), L0(y)}

2: Verify Permutation Argument:
3: Denote polynomials included in permutation argument as f0, . . . , fNperm−1
4: Get values {fi(y)}, {Se

i (y)}, {Sσ
i (y)}, V σ(y), V σ(ζ · y), L0(y), qlast(y), qpad(y) from πPlaceholder

5: Calculate

F0(y), F1(y), F2(y) = PermArgumentVerify(y, V σ(y), V σ(ζ · y), {fi(y)},

{Se
i (y)}, {Sσ

i (y)}, qpad(y), qlast(y), L0(y), transcript)

6: Verify Lookup Argument:
7: Denote polynomials included in lookup argument as a0, . . . , aNlk−1
8: Get values {ai(y)}, {li(y)}, aperm(y), aperm(ζ−1 · y), lperm(y), VL(y), VL(ζ · y), L0(y), qlast(y), qpad(y)

from πPlaceholder
9: Calculate:

F3(y), F4(y), F5(y), F6(y), F7(y) = LookupArgumentVerify(
lookupperm, {ai(y)}, {li(y)},

aperm(y), aperm(ζ−1 · y), lperm(y),
VL(y), VL(ζ · y), L0(y), qlast(y), qpad(y), transcript)

10: transcript.append(V_polynomials)
11: Verify Basic Constraints:
12: For i = 0, . . . , Nsl − 1

gi(X) = qi(X) · (θki−1+νiCi0(X) + · · · + θνiCik−1(X))

13: Calculate a constraints-related numerator of the quotient polynomial F8(y) =
∑

0≤i<Nsl

(gi(y))

14: Quotient polynomial check:

15: if
8∑

i=0
αiFi(y) ̸= Z(y)T (y) then return false

16: Get challenges {αi ∈ F}8
i=0, θ ∈ F, y ∈ F \ H from transcript

17: transcript.append(quotient)
18: Evaluation proof check
19: if LPC.EvalVerify(polynomials_evaluations, πcomm, transcript) = false then return false

24

Dra
ft

8 Optimizations

8.1 Batched FRI

Instead of checking each commitment individually, it is possible to aggregate them for FRI. For
polynomials f0, . . . , fk:

1. Get θ from transcript

2. f = f0 · θk−1 + · · · + fk

3. Run FRI over f , using oracles to f0, . . . , fk

Thus, we can run only one FRI instance for all committed polynomials.
See [6] for details.

8.2 Hash By Column

Instead of committing each of the polynomials, it is possible to use the same Merkle tree for several
polynomials. This leads to the decrease of the number of Merkle tree paths which are required to be
provided by the prover.

See [15], [6] for details.

8.3 Hash By Subset

Each i + 1 FRI round supposes the prover to send all elements from a coset H ∈ D(i). Each Merkle
leaf is able to contain the whole coset instead of separate values.

See [15] for details. Similar approach is described in [6]. However, the authors of [6] use more values
per leaf, that leads to better performance.

8.4 Grinding

Placeholder combines FRI with the grinding optimization. Grinding adds a special nounce to the proof,
which is used as an additional parameter of the Fiat-Shamir technique and leads to a challenge that meets
the desired criteria (for example, the first B bits are equal 0). This requires the honest prover to produce
a proof-of-work witness before output a FRI proof. The advantage of this optimization is that it reduces
the probability of accepting a fake proof by a factor of about 2B, thus allowing for a smaller proof size.

See [18] for details.
In Appendix B, we provide lower bounds for the parameter queriesFRI for various levels of conjectured

security and the grinding.

9 On the choice of parameters and asymptotic complexity

In this paragraph, we describe some nuances of choosing Placeholder’s parameters for practical use.
Choosing the code rate (ρ = 1/2R) allows you to achieve a tradeoff between the prover time and the size
of the proof you get. Increasing the value of R reduces the number of repetitions of the Query phase
of the FRI protocol and proof size. At the same time, the running time will be increased, since the
polynomial for the commit will have degree 2d+R. Placeholder actively uses custom gates, allowing more
compact circuits for specific programs. However, using custom gates is not free. The quotient polynomial
has degree 2d+Cgt , where Cgt is the maximum degree of the gate. Finally, the use of grinding introduces
additional computational costs for proof generation. The complexity of this stage is estimated by the
complexity of obtaining the preimage of the hash function for a given pattern of values.

Summarizing the above, in figure 2 we present a graphic representation of the dependence of the
asymptotic complexity of the prover on the chosen parameters.

25

Dra
ft(a)

(b)

(c)

Figure 2: Prover’s asymptotic complexity with (a) 0 grinding bits (b) 15 grinding bits (c) 30 grinding bits

26

Dra
ft

10 Zero Knowledge

10.1 Cosets

As a part of modifications to achieve zero-knowledge property, [6] proposes to use a cosets of the sub-
domains D(i) introduced in Section 5. Let h ∈ F∗/D. Define domains D(0)′ = hD(0), . . . , D(r)′ = hD(r).
FRI protocol works with new domains in the same way as described in Section 5.

10.2 Hiding Commitments

We use Merkle tree commitments with a pivacy adjustments from [19]. Each Merkle tree leaf contains
concatenation of the original leaf data and a random value of the size 2λ for the given security parameter
λ.

10.3 Random Rows

We use the same approach as Mina [20] and Halo [21]. The zero-knowledge adjustment is already
included in the protocol in Section 7. In this section, we provide details on a PLONK-trace table
preprocessing.

The basic idea is to fill the last t rows of the table with uniformly distributed random values. In this
case, the values of the polynomials constructed during the protocol are uniformly distributed random
values as well. The same is true for the last t evaluations of permutation and lookup polynomials. However,
this change affects the permutation and lookup arguments.

Denote the number of usable rows by Nusable = Nrows − t − 1. Now we introduce two additional
selectors:

• qblind, qblind(ωi) = 1 for Nusable < i ≤ Nrows and qblind is equal to zero elsewhere.
• qlast, qlast(ωNusable) = 1 and qlast is equal to zero elsewhere.

The new selectors and corresponding calculations are included in the protocol in Section 7.

27

Dra
ft

References
1. Gabizon A., Williamson Z. J., Ciobotaru O. PLONK: Permutations over Lagrange-bases for Oecu-

menical Noninteractive arguments of Knowledge. — 2019. — https://ia.cr/2019/953. Cryptology
ePrint Archive, Report 2019/953.

2. Gabizon A., Williamson Z. J. Proposal: The Turbo-PLONK program syntax for specifying SNARK
programs. — https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-
turbo_plonk.pdf.

3. The Halo 2 Proving System. — 2022. — URL: https://halo2.dev/ (visited on 02/06/2023).
4. Introducing Plonky2 — Polygon | Blog. — 2022. — URL: https://polygon.technology/blog/

introducing-plonky2 (visited on 02/06/2023).
5. Kimchi: The latest update to Mina’s proof system. — 2022. — URL: https://minaprotocol.com/

blog/kimchi-the-latest-update-to-minas-proof-system (visited on 02/06/2023).
6. Kattis A., Panarin K., Vlasov A. RedShift: Transparent SNARKs from List Polynomial Commitment

IOPs. — 2019. — https://ia.cr/2019/1400. Cryptology ePrint Archive, Report 2019/1400.
7. Groth J. On the Size of Pairing-based Non-interactive Arguments. — 2016. — URL: https://

eprint.iacr.org/2016/260 (visited on 01/30/2023) ; Report Number: 260.
8. Pinocchio: Nearly Practical Verifiable Computation / B. Parno [et al.]. — 2013. — URL: https:

//eprint.iacr.org/2013/279 (visited on 01/30/2023) ; Report Number: 279.
9. Marlin: Preprocessing zkSNARKs with Universal and Updatable SRS / A. Chiesa [et al.]. — 2019. —

URL: https://eprint.iacr.org/2019/1047 (visited on 01/27/2023) ; Report Number: 1047.
10. Gabizon A., Williamson Z. J., Ciobotaru O. PLONK: Permutations over Lagrange-bases for Oecumeni-

cal Noninteractive arguments of Knowledge. — 2019. — URL: https://eprint.iacr.org/2019/953
(visited on 01/03/2023) ; Report Number: 953.

11. Kate A., Zaverucha G. M., Goldberg I. Constant-Size Commitments to Polynomials and Their
Applications // Advances in Cryptology - ASIACRYPT 2010. Vol. 6477 / ed. by D. Hutchison
[et al.]. — Berlin, Heidelberg : Springer Berlin Heidelberg, 2010. — P. 177–194. — DOI: 10.1007/978-
3-642-17373-8_11. — URL: http://link.springer.com/10.1007/978-3-642-17373-8_11
(visited on 02/21/2023) ; Series Title: Lecture Notes in Computer Science.

12. Scalable, transparent, and post-quantum secure computational integrity / E. Ben-Sasson [et al.]. —
2018. — URL: https://eprint.iacr.org/2018/046 (visited on 01/30/2023) ; Report Number:
046.

13. Permutation argument - The halo2 Book. — 2021. — URL: https://zcash.github.io/halo2/
design/proving-system/permutation.html#algorithm (visited on 01/20/2023).

14. Lookup argument - The halo2 Book. — 2021. — URL: https://zcash.github.io/halo2/design/
proving-system/lookup.html (visited on 01/20/2023).

15. Chiesa A., Ojha D., Spooner N. Fractal: Post-Quantum and Transparent Recursive Proofs from
Holography. — 2019. — URL: https://eprint.iacr.org/2019/1076 (visited on 01/20/2023) ;
Report Number: 1076.

16. Kattis A., Panarin K., Vlasov A. RedShift: Transparent SNARKs from List Polynomial Commit-
ments. — 2019. — URL: https://eprint.iacr.org/2019/1400 (visited on 01/20/2023) ; Report
Number: 1400.

17. Efficient polynomial commitment schemes for multiple points and polynomials / D. Boneh [et al.]. —
2020. — URL: https://eprint.iacr.org/2020/081 (visited on 02/21/2023) ; Report Number:
081.

18. StarkWare. ethSTARK Documentation. — 2021. — URL: https://eprint.iacr.org/2021/582
(visited on 02/19/2023) ; Report Number: 582.

19. Ben-Sasson E., Chiesa A., Spooner N. Interactive Oracle Proofs. — 2016. — https://ia.cr/2016/
116. Cryptology ePrint Archive, Report 2016/116.

20. A More Efficient Approach to Zero Knowledge for PLONK. — 2020. — URL: https://minaprotocol.
com / blog / a - more - efficient - approach - to - zero - knowledge - for - plonk (visited on
01/20/2023).

28

https://ia.cr/2019/953
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-turbo_plonk.pdf
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-turbo_plonk.pdf
https://halo2.dev/
https://polygon.technology/blog/introducing-plonky2
https://polygon.technology/blog/introducing-plonky2
https://minaprotocol.com/blog/kimchi-the-latest-update-to-minas-proof-system
https://minaprotocol.com/blog/kimchi-the-latest-update-to-minas-proof-system
https://ia.cr/2019/1400
https://eprint.iacr.org/2016/260
https://eprint.iacr.org/2016/260
https://eprint.iacr.org/2013/279
https://eprint.iacr.org/2013/279
https://eprint.iacr.org/2019/1047
https://eprint.iacr.org/2019/953
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
http://link.springer.com/10.1007/978-3-642-17373-8_11
https://eprint.iacr.org/2018/046
https://zcash.github.io/halo2/design/proving-system/permutation.html#algorithm
https://zcash.github.io/halo2/design/proving-system/permutation.html#algorithm
https://zcash.github.io/halo2/design/proving-system/lookup.html
https://zcash.github.io/halo2/design/proving-system/lookup.html
https://eprint.iacr.org/2019/1076
https://eprint.iacr.org/2019/1400
https://eprint.iacr.org/2020/081
https://eprint.iacr.org/2021/582
https://ia.cr/2016/116
https://ia.cr/2016/116
https://minaprotocol.com/blog/a-more-efficient-approach-to-zero-knowledge-for-plonk
https://minaprotocol.com/blog/a-more-efficient-approach-to-zero-knowledge-for-plonk

Dra
ft

21. Lookup argument - The halo2 Book. — 2021. — URL: https://zcash.github.io/halo2/design/
proving-system/lookup.html#zero-knowledge-adjustment (visited on 01/20/2023).

22. Fast Reed-Solomon Interactive Oracle Proofs of Proximity : tech. rep. / E. Ben-Sasson [et al.]. —
2017. — No. 134. — URL: https://eccc.weizmann.ac.il/report/2017/134/ (visited on
02/16/2023).

23. Ben-Sasson E., Kopparty S., Saraf S. Worst-Case to Average Case Reductions for the Distance to
a Code //. — Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH, Wadern/Saarbruecken,
Germany, 2018. — 23 pages. — DOI: 10.4230/LIPICS.CCC.2018.24. — URL: http://drops.
dagstuhl.de/opus/volltexte/2018/8865/ (visited on 02/28/2023) ; Artwork Size: 23 pages
Medium: application/pdf.

24. DEEP-FRI: Sampling Outside the Box Improves Soundness / E. Ben-Sasson [et al.]. — 2019. —
URL: https://eprint.iacr.org/2019/336 (visited on 02/16/2023).

25. Proximity Gaps for Reed-Solomon Codes / E. Ben-Sasson [et al.]. — 2020. — URL: https://eprint.
iacr.org/2020/654 (visited on 02/16/2023) ; Report Number: 654.

29

https://zcash.github.io/halo2/design/proving-system/lookup.html#zero-knowledge-adjustment
https://zcash.github.io/halo2/design/proving-system/lookup.html#zero-knowledge-adjustment
https://eccc.weizmann.ac.il/report/2017/134/
https://doi.org/10.4230/LIPICS.CCC.2018.24
http://drops.dagstuhl.de/opus/volltexte/2018/8865/
http://drops.dagstuhl.de/opus/volltexte/2018/8865/
https://eprint.iacr.org/2019/336
https://eprint.iacr.org/2020/654
https://eprint.iacr.org/2020/654

Dra
ft

A FRI Soundness estimation

FRI (Fast Reed-Solomon Code Interactive Oracle Proof of Proximity) checks whether a received word
f belongs to the RS code or it is δ-far in relative Hamming distance from all codewords. The rejection
probability ε(δ) of the word that is δ-far from code is called soundness error. The following estimations
are based on recent soundness analysis [22], [23], [24], [25].

Parameters
We start by recalling the parameters of the FRI protocol.

Parameter Meaning

R Rate parameter of the RS code (ρ = 2−R)
D, |D| = 2n Evaluation domain of the RS code
d Maximum polynomial degree of RS : d < ρ · |D| = 2n−R

µ Localization parameter
m Correlated Agreement parameter
rFRI Number of rounds rFRI ≤ ⌊(n − R)/m⌋
lFRI Repetition parameter of Query phase
δ Proximity parameter
ε Error bound
κ Number of output bits of the hash function used to construct the Merkle trees
λ Desired level of bit-security

Table 3: FRI Parameters

The initial analysis
Let ρ · |D| > 16. Following [22] we can estimate error bound (δ(0)-far f (0) is rejected with probability

at least):

ε(δ(0)) ≥ 1 −

3 · |D|
|F|

+
(

1 − min
{

δ(0),
1 − 3ρ − 2µ/

√
|D|

4

})lFRI
 ,

where δ(0) = ∆(f (0), RS[F, D, ρ]). Consider the case of f that is maximally far from RS (δ(0) ≈ 1 − ρ). Let
µ = 1, δT = (1 − 3ρ)/4 − 2−n/2−1 than for λ-bit soundness and far enough f we have to have

(1 − ε(δ(0))) = 3 · 2n

|F|
+ (1 − min{δ(0), δT })lFRI =

= 3 · 2n

|F|
+ (1 − δT)lFRI = 3 · 2n

|F|
+
(

3
4(1 + ρ) + 2− n

2 −1
)lFRI

≤ 2−λ.

Worst-case to average case reductions
For the case ρ · |D| > 16 following [23] we can estimate error bound:

ε(δ(0)) = 1 −
(

2 · log |D|
η3|F|

+
(

1 − min
{

δ(0), Jη(Jη(1 − ρ))
}

+ η log |D|
)lFRI

)
,

For λ-bit soundness and far enough f we have to have

(1 − ε(δ(0))) = 2 · log |D|
η3|F|

+
(

1 − min
{

δ(0), Jη(Jη(1 − ρ))
}

+ η log |D|
)lFRI

=

= 2 · n

η3|F|
+ (1 − Jη(Jη(1 − ρ)) + η · n)lFRI = 2 · n

η3|F|
+ (4

√
ρ + 2 4

√
η + η · n)lFRI ≤ 2−λ.

There is improvement [24] of the above equation

4
√

ρ → 3
√

ρ : which is optimal for 2n ≈ q.

30

Dra
ft

Correlated agreement
For the case ρ · |D| > 16 following [25] we can estimate error bound:

ε = 1 − (εC + εlFRI
Q)

= 1 −

(
(m + 1

2)7 · |D|2

2ρ3/2|F|
+ (2m + 1) · (|D| + 1)

ρ
·
∑r

i=1 l(i)

|F|
+
(

√
ρ ·
(

1 + 1
2m

))lFRI
)

For λ-bit soundness and far enough f we have to have

(1 − ε(δ(0))) =
(m + 1

2)7 · |D|2

2ρ3/2|F|
+ (2m + 1) · (|D| + 1)

ρ
·
∑r

i=1 l(i)

|F|
+
(

√
ρ ·
(

1 + 1
2m

))lFRI

=

=
(m + 1

2)7 · 22n

2ρ3/2|F|
+ (2m + 1) · (2n + 1)

ρ
· 2n

|F|
+
(

√
ρ ·
(

1 + 1
2m

))lFRI

≤ 2−λ.

Method Required number of repetitions of Query phase of FRI

Initial analysis [22] lFRI ≈ 2.4 · λ

Worst-case to average case reductions [23] lFRI ≈ (4/R)λ
Improvements from [24] lFRI ≈ (3/R)λ
Correlated agreement [25] lFRI ≈ (2/R)λ
Aggressive conjecture [25] lFRI ≈ (1/R)λ

Table 4: FRI Soundness estimations

31

Dra
ft

B FRI Queries

Sec level Grinding bits Blowup factor (1/ρ) Lower bound for queriesFRI

128 32 16 24
128 32 32 20
128 32 64 16
128 32 128 14
128 32 256 12

100 32 16 17
100 32 32 14
100 32 64 12
100 32 128 10
100 32 256 9

90 32 16 15
90 32 32 12
90 32 64 10
90 32 128 9
90 32 256 8

128 0 16 32
128 0 32 26
128 0 64 22
128 0 128 19
128 0 256 16

100 0 16 25
100 0 32 20
100 0 64 17
100 0 128 15
100 0 256 13

90 0 16 23
90 0 32 18
90 0 64 15
90 0 128 13
90 0 256 12

Table 5: queriesFRI estimations for conjectured security levels

32

	Introduction
	Preliminaries
	Notation
	Plonk Arithmetization

	Permutation Argument
	Permutation Argument Details
	Permutation Construction Algorithm

	Lookup Argument
	Arithmetization Details
	Permutation
	Assertion Check
	Generalization
	Small Tables
	Lookup Arguments

	Placeholder Commitment Scheme
	Scheme Parameters
	Proof format
	Implemented optimizations
	LPC Preprocessing
	Merkle trees usage
	Proof eval
	Verify eval
	Soundness

	KZG Commitment Scheme
	Placeholder Protocol
	Protocol Parameters
	Preprocessing
	Prover View
	Verifier View

	Optimizations
	Batched FRI
	Hash By Column
	Hash By Subset
	Grinding

	On the choice of parameters and asymptotic complexity
	Zero Knowledge
	Cosets
	Hiding Commitments
	Random Rows

	FRI Soundness estimation
	FRI Queries

